翻訳と辞書
Words near each other
・ Tschiertschen-Praden
・ Tschierv
・ Tschierva Glacier
・ Tschierva Hut
・ Tschilp
・ Tschima da Flix
・ Tschingel
・ Tschingel Glacier
・ Tschingel Pass
・ Tschingelhorn
・ Tschingelhörner
・ Tschingellochtighorn
・ Tschingelsee
・ Tschingelspitz
・ Tschirn
Tschirnhaus transformation
・ Tschirnhausen cubic
・ Tschitscherinellus
・ Tschlin
・ Tschoon Su Kim
・ Tschop
・ Tschudi
・ Tschudi Group
・ Tschudi mine
・ Tschudi's slender opossum
・ Tschudi's tapaculo
・ Tschudi's woodcreeper
・ Tschudi's yellow-shouldered bat
・ Tschuffert Peak
・ Tschugg


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Tschirnhaus transformation : ウィキペディア英語版
Tschirnhaus transformation
In mathematics, a Tschirnhaus transformation, also known as Tschirnhausen transformation, is a type of mapping on polynomials developed by Ehrenfried Walther von Tschirnhaus in 1683. It may be defined conveniently by means of field theory, as the transformation on minimal polynomials implied by a different choice of primitive element. This is the most general transformation of an irreducible polynomial that takes a root to some rational function applied to that root.
In detail, let ''K'' be a field, and ''P''(''t'') a polynomial over ''K''. If ''P'' is irreducible, then
:''K''()/(''P''(''t'')) = ''L'',
the quotient ring of the polynomial ring ''K''() by the principal ideal generated by ''P'', is a field extension of ''K''. We have
:''L'' = ''K''(α)
where α is ''t'' modulo (''P''). That is, α is a primitive element of ''L''. There will be other choices β of primitive element in ''L'': for any such choice of β we will have
:β = ''F''(α), α = ''G''(β),
with polynomials ''F'' and ''G'' over ''K''. In fact this follows from the quotient representation above. Now if ''Q'' is the minimal polynomial for β over ''K'', we can call ''Q'' a Tschirnhaus transformation of ''P''.
Therefore the set of all Tschirnhaus transformations of an irreducible polynomial is to be described as running over all ways of changing ''P'', but leaving ''L'' the same. This concept is used in reducing quintics to Bring–Jerrard form, for example. There is a connection with Galois theory, when ''L'' is a Galois extension of ''K''. The Galois group is then described (in one way) as all the Tschirnhaus transformations of ''P'' to itself.
==See also==

*Polynomial transformations

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Tschirnhaus transformation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.